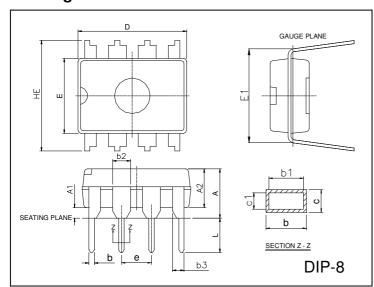
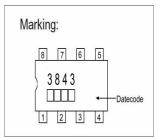
GP3843

HIGH PERFORMANCE CURRENT MODE CONTROLERS

Description

The GP3843 is specifically designed for Off-Line and dc-to-dc converter applications offering the designer a cost-effective solution with minimal external components.


The GP3843 has UVLO thresholds 8.5V(on) and 7.6V(off), ideally suited for off-line converters.


Features

- *Trimmed Oscillator for Precise Frequency Control *Oscillator Frequency Guaranteed at 250kHz

- *Current Mode Operation to 500kHz *Automatic Feed Forward Compensation
- *latching PWM for Cycle-By-Cycle Current Limiting *Internally Trimmed Reference with Undervoltage Lockout *High Current Totem Pole Output
- *Undervoltage Lockout with Hysteresis
- *Low Startup and Operating Current

Package Dimensions

REF.	Millimeter		DEE	Millimeter		
	Min.	Max.	REF.	Min.	Max.	
Α	-	0.5334	c1	0.203	0.279	
A1	0.381	-	D	9.017	10.16	
A2	2.921	4.953	Е	6.096	7.112	
b	0.356	0.559	E1	7.620	8.255	
b1	0.356	0.508	е	2.540 BSC		
b2	1.143	1.778	HE	-	10.92	
b3	0.762	1.143	L	2.921	3.810	
С	0.203	0.356				

DIP-8L	Function	Description				
	Pin1:Compensation	This pin is the Error Amplifier output and is made available for loop compensation.				
	Pin2:Voltage Feedback	This is the inverting input of the Error Amplifier. It's normally connected to the Switching power supply output through a resistor divider.				
8 7 6 5	Pin3:Current Sense	A voltage proportional to inductor current is connected to this input .The PWM uses this information to terminate the output switch conduction.				
}	Pin4:RT/CT	The oscillator frequency and maximum output duty cycle are programmed by connecting resistor RT to Vref and capacitor CT to ground .Operation 500kHz is possible.				
	Pin5:Ground	This pin is the combined control circuitry and power ground.				
1 2 3 4	Pin6:Output	This output directly drives the gate of a power MOSFET. Peak currents up to 1 A are sourced and sunk by this pin.				
	Pin7:Vcc	This pin is the positive supply of the control IC.				
	Pin8:Vref	This is the reference output .lt provides charging current for capacit through resistor RT.				

Absolute Maximum Ratings at Ta = 25° C

<u> </u>					
Parameter	Symbol VALUE		Unit		
Total power Supply and Zener current	(ICC+Iz)	30	mA		
Output current, source or sink(note1)	lo	1.0	Α		
Output energy(capacitive load per cycle)	W	5.0	μJ		
Current sense and voltage feedback inputs	Vin	-0.3 to 5.5	V		

GP3843 Page: 1/9

CORPORATION

ISSUED DATE :2004/04/19 REVISED DATE :2004/09/30B

Error Amplifier Output Sink Current	lo	10	mA
Power Dissipation at Thermal Characteristics	PD PθJA	1250 100	mW ℃/W
Storage Temperature Range	Tstg	-65 to 150	$^{\circ}\!\mathbb{C}$
Operating Junction Temperature	TJ	+150	$^{\circ}\!\mathbb{C}$
Operating ambient Temperature	TA	0~+70	$^{\circ}\!\mathbb{C}$

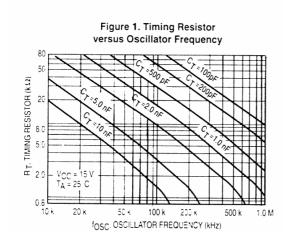
Electrical Characteristics (0°C≤TA≤70°C,Vcc=15V[note 2],RT=10k,CT=3.3Nf,unless otherwise specified)

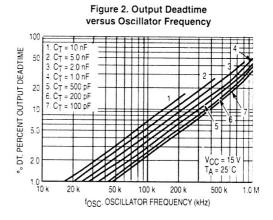
Parameter	SYMBOL	Test Conditions		Тур.	Max.	Unit
Reference Section					I	
Output Voltage	VREF	Tj=25°C,lo=1mA	4.90	5	5.1	V
Line Regulation	Regline	Vcc=12V to 25V		2.0	20	mV
Load Regulation	Regload	lo=1mA to 20mA		3.0	25	mV
Temperature. Stability	Ts			0.2	-	mV/°C
Total Output Variation	VREF	Line, Load, Temperature	4.82	-	5.18	V
Output Noise Voltage	Vn	F=10kHz to 10Hz,Tj=25°C	-	50	-	μV
Long Term Stability	S	TA=125°C,1000Hrs	-	5	-	mV
Output Short Circuit current	ISC		-30	-85	-180	mA
Oscillator Section	<u> </u>				<u> </u>	
Frequency		Tj=25°C	49	52	55	
		TA=0°C to 70°C	48		56	KHz
		Tj=25°C (RT=6.2k,CT=1.0nF)	225	250	275	
Frequency Change with Voltage	Δfosc/ΔV	Vcc=12V to 25V		0.2	1.0	%
Frequency Change with Temperature	Δfosc/ΔT	TA = 0°C to 70 °C		0.5		%
Oscillator Voltage Swing(Peak to Peak)	VOSC			1.6		V
Discharge Current	ldischg	Tj=25℃ TA = 0℃ to 70℃	7.8 7.6	8.3	8.8 8.8	mA
Error Amplifier Section	I					ı
Voltage Feedback Input	VFB	Vo =2.5V	2.42	2.50	2.58	V
Input Bias Current	IIB	VFB=5.0V		-0.1	-2.0	μA
Open Loop Voltage Gain	AVOL	Vo=2V to 4V	65	90		dB
Unity Gain Bandwidth	BW	Tj=25°C	0.7	1.0		MHz
Power Supply Rejection Ratio	PSRR	Vcc=12V to 25V	60	70		dB
Output Sink Current	Isink	Vo=1.1V,VFB=2.7V	2.0	12		mA
Output Source Current	Isource	Vo=5.0V,VFB=2.3V	-0.5	-1.0		mA
Output Voltage Swing High State	Vон	VFB=2.3V,RL=15K to GND	5.0	6.2		V
Output Voltage Swing Low State	Vol	VFB=2.7V,RL=15K to Vref		0.8	1.1	V
Current Sense section						
Current Sense Input Voltage gain	Av	(Note 3,4)	2.85	3.0	3.15	V/V
Maximum Current Sense Input Threshold	Vth	(Note 3)	0.9	1.0	1.1	V
Power Supply Rejection Ratio	PSRR	Vcc= 12 to 25V (Note 3)		70		dB
Input Bias Current	Iв			-2	-10	μA
Propagation Delay	Tplh(in/out)	Current Sense Input to Output		150	300	ns
Output Low Voltage	Vol	Isink=20mA		0.1	0.4	V
Output Low Voltage		Isink=200mA		1.6	2.2	V
Output High Level	Vон	Isource=20mA	13	13.5		V
Output High Level		Isource=200mA	12	13.4		V
Output Voltage with UVLO Activated	VOL	VCC=6.0V,Isink=1.0mA		0.1	1.1	V
	(UVLO)	T' 05°0 0 4 5				
Output Voltage Rise Time	tr	Tj=25℃,CL=1nF		50	150	ns
Output Voltage Fall Time	tr	Tj=25°C,CL=1nF		50	150	ns

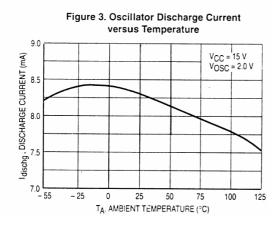
GP3843 Page: 2/9

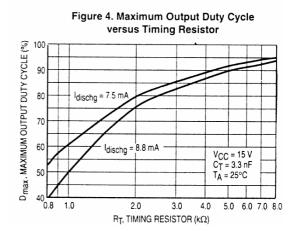
Under-Voltage Lockout Section						
Startup Threshold	Vth		7.8	8.4	9.0	V
Min. Operating Voltage After Turn-on(Vcc)	Vopr(min)		7.0	7.6	8.2	V
PWM Section						
Maximum Duty Cycle	DC(MAX)		94	96		%
Minimum Duty Cycle	DC(MIN)				0	%
Total Device		•				
Power Startup Supply Current	lcc+lc	Vcc=6.5V		0.2	0.3	mA
Power Operating Supply Current	lcc+lc	Note 2		12	17	mA
Power Supply Zener Voltage	Vz	Icc=25mA	30	36		V

Note 1: Maximum Package power dissipation limits must be observed.

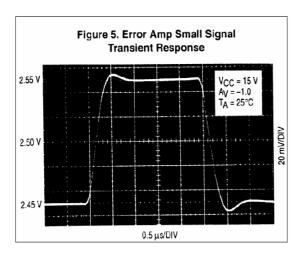

Note 2: Adject Vcc above the Startup threshold before setting to 15V.

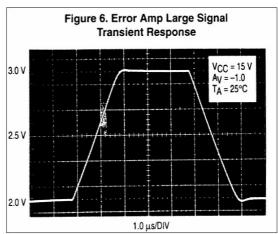

Note 3: This parameter is measured at the latch trip point with VFB=0V.

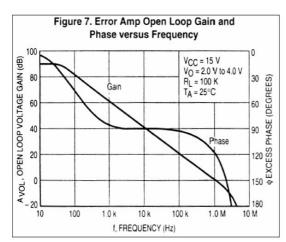

Note 4: Comparator gain is defined as::

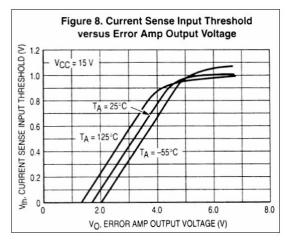

 $ext{AV} = rac{\Delta V ext{ Output Compensation}}{\Delta V ext{ Current Sense Input}}$

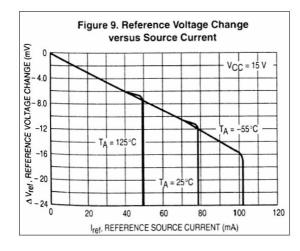
Characteristics Curve

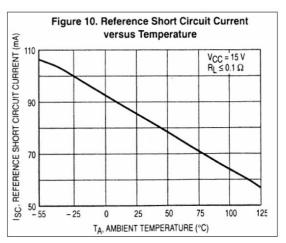


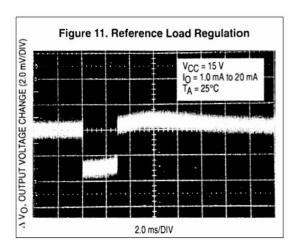


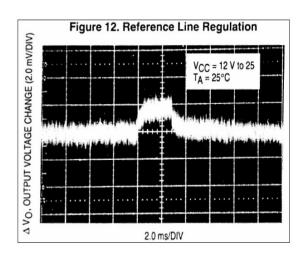


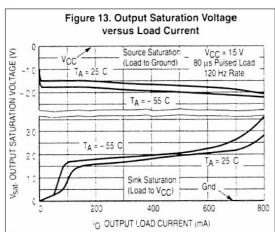


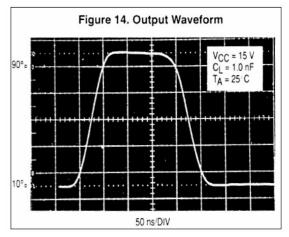

GP3843 Page: 3/9

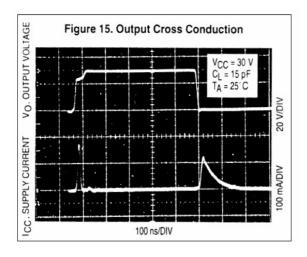


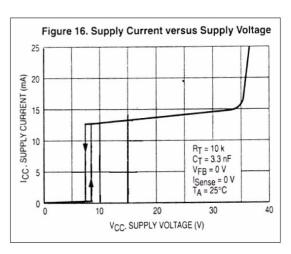


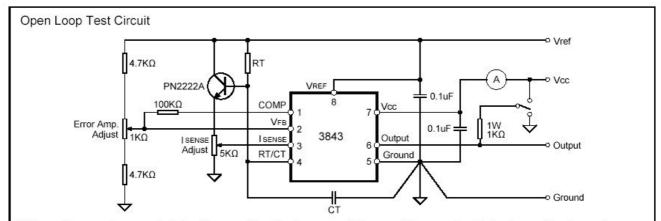


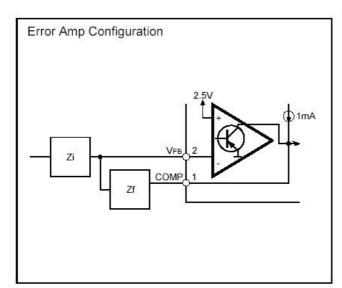


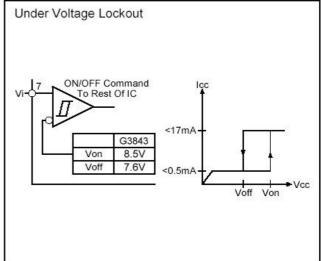


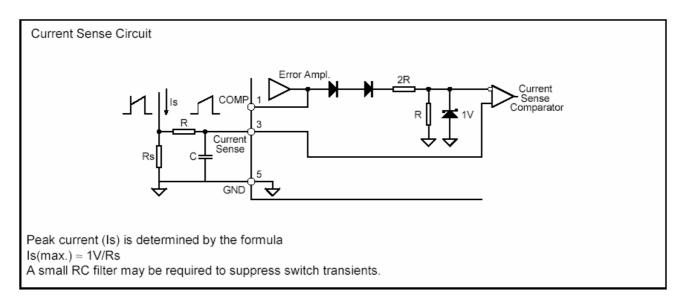

GP3843 Page: 4/9

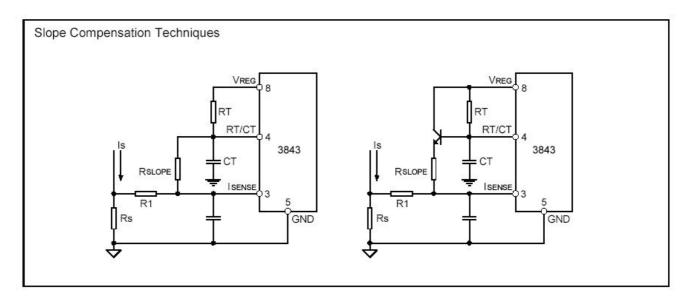


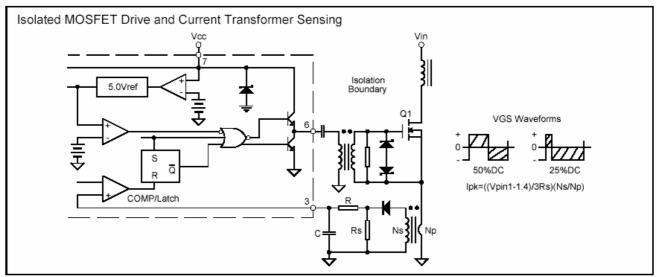


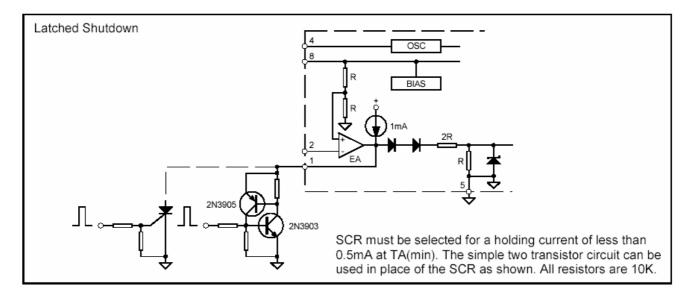


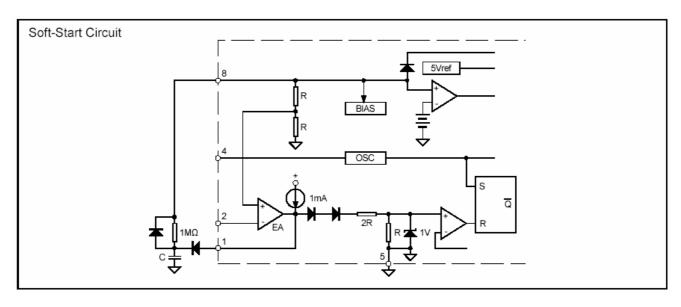

GP3843 Page: 5/9

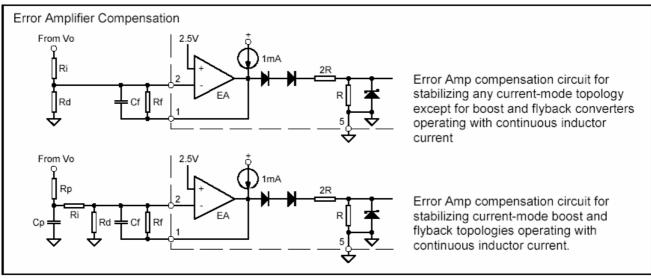

Application Information

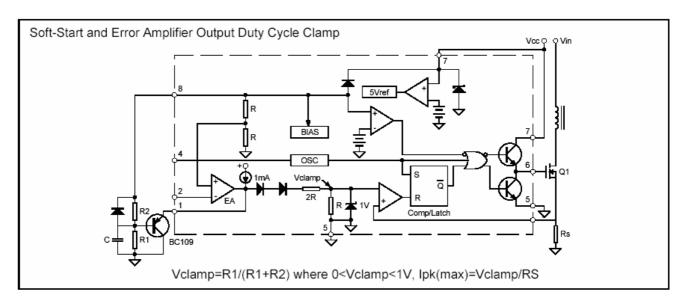

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin5 in a single point ground. The transistor and $5K\Omega$ potentiometerare used to samplethe oscillator waveform and apply an adjustable ramp to pin3.

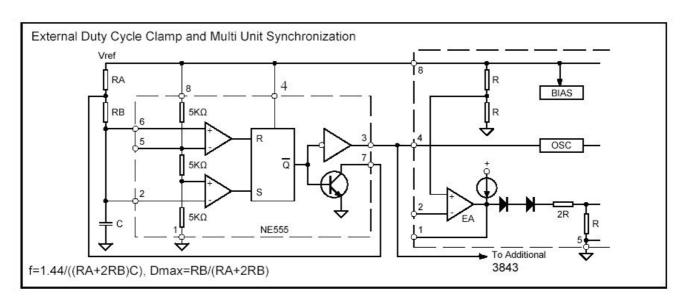


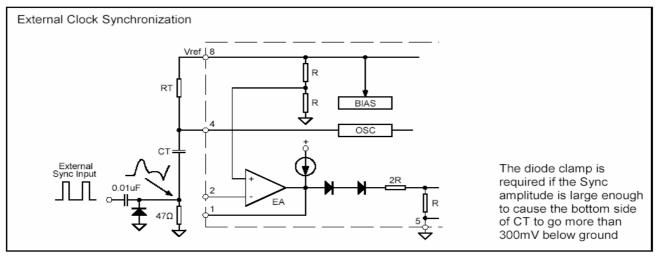



GP3843 Page: 6/9






GP3843 Page: 7/9



GP3843 Page: 8/9

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM.

 GTM reserves the right to make changes to its products without notice.

 GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems.

 GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.

- Head Office And Factory:
 Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.
 TEL: 886-3-597-7061 FAX: 886-3-597-9220, 597-0785
 China: (201203) No.255, Jang-Jiang Tsai-Lueng RD., Pu-Dung-Hsin District, Shang-Hai City, China TEL: 86-21-5895-7671 ~ 4 FAX: 86-21-38950165

GP3843 Page: 9/9